Hold on just a sec...
3 credits
Spring 2026 Distance Learning Upper DivisionPropulsion systems convert some form of stored energy or energy that is freely available in the environment into kinetic energy to produce thrust. Since the energy involved is used to do work, the study of propulsion systems is based on concepts from thermodynamics. The course thus begins with a review of essential thermodynamics, which we then use to analyze thermodynamic cycles that form the basis of propulsion systems. In the vast majority of propulsion systems, the energy is stored in chemical bonds in a fuel and an oxidizer, and released when these undergo a chemical reaction to produce heat. Such "chemical propulsion systems" thus involve combustion chemistry, which will be covered in the course. In many cases, the oxidizer is available in the surrounding atmosphere and only the fuel must be carried by the flight vehicle; such systems are referred to as "air-breathing propulsion systems." For other systems, especially those intended for use outside the atmosphere, both the fuel and oxidizer must be carried by the vehicle; the resulting system is then referred to as a "rocket propulsion system." Both these types of systems will be covered in detail in the course. We will cover both the analysis of such systems as well as their practical engineering implementation and integration into propulsion system components and complete propulsion systems. Credit cannot be earned in more than one of AAE 33800, AAE 33900, AAE 50900.
Learning Outcomes1Demonstrate a knowledge of conventional propulsion system types, their form, the functions of their components, and the applications for which they are suited.
2Calculate the properties of 1D compressible flow with area change, energy exchange (heat and work), friction, and shocks.
3Apply laws of conservation and the 2nd Law of thermodynamics to calculate thrust and specific impulse.
4Calculate performance and efficiency of ramjets, turbojets, turbofans, turboprops and rockets and their components including inlets, compressors and pumps, combustors, turbines, and nozzles.
5Derive propulsion requirements from mission requirements and perform top-level sizing calculations of ramjets, gas turbine engines, liquid rockets, and solid rockets.